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In this paper we study variational properties and convergence of quadratic spline
interpolation where the points of interpolation are kept uniformly away from the
mesh points.

1. INTRODUCTION

Marsden [1] showed that quadratic spline interpolation at the midpoints
of mesh intervals gives rise to projections that are uniformly bounded in
C[0,1]. In [2], Kammerer et al. extended Marsden’s result by proving,
among other things, convergence of derivatives and a local convergence
theorem. Demko [4] showed that, for the class of Lipschitz continuous
functions, quadratic spline interpolation converges at the correct rate as long
as the points of interpolation are kept uniformly away from the mesh points.
In [5], Sharma and Tzimbarlario studied the variational properties of certain
kinds of quadratic splines. Here we study quadratic spline interpolation
methods where the points of interpolation are kept away from the mesh
points. One of the purposes is to study variational properties that extend the
results of [5]. Another purpose is to study the convergence of splines and
their derivatives for the class of functions C’[a, ] (r=0, 1, 2, 3). We extend
Demko’s results and obtain error bounds for some smooth functions.

2. INTERPOLATION PROBLEMS

For —o0 < a < b < +o0 and for any positive integer n > 2, let
A a=x,<x; <+ <X, =b,

4, A=y, <y < <Yp1=b
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denote two partitions of [a,b], respectively, with knots x,, y,. The
relationship between 4, and 4, is

Yo=Xg <Py <Xy < ore K P <Xy =V 44

Let Sp(d,, 2) denote the quadratic polynomial spline class defined on the
partion 4,.
We have two types of interpolation problems.

1-type interpolation problem: Finding s(x) € Sp(4,, 2) such that

s(y)=f  (U=01l.,n+1) (2.1)

2-type interpolation problem: Finding s(x) € Sp{4,, 2) such that
s(xj) =f; (j = 05 ls--'9 n)a (2.2)
s'xo) =S5 S x)=S7- (2.3)

THEOREM 2.1. The solution of the k-type (k = 1, 2) interpolation problem
uniquely exists.

Proof. The proofs for k=1 and 2 are similar, so we just show the case
k=1

It is enough to show the homogeneous interpolation problem has only the
trivial solution.

By s(x) € C'[a,b] and Rolle’s theorem here must exist z; € (¥;,5;41)
such that ‘

s'(z)=0 i=01,..,n).
Therefore the solution s{x) must satisfy the following 2n + I conditions:
s(y)=0 i=0,1,.,n+1),
§'(z)=0 (i=412.,n—1)

There are 2n + 1 conditions, but only n subintervals, so there must exist a
subinterval [x;, x,,,] in which

s'(z;2)=0,  s(y)=0, s'(z)=0,

which uniquely define a quadratic polynomial s(x)=0 on the interval
[x;s x;,,]- Then we obtain

s(x)=0, s'(x)=0, s(x;1) =0, s'(x;41)=0.

Therefore in the adjacent subintervals to [x;, x,, ] there are three conditions
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which uniquely define s(x)=0 on these subintervals. Finitely repeating the
process above we obtain s(x) = 0 on the interval |a, b]. Q.E.D.

Remark. For the following interpolation problems whose end point inter-
polation conditions are changed the solution uniquely exists too. The
problems are as follows.

1-type interpolation problem: Finding s(x) € Sp(4,, 2) such that
s(y) =/ (j=12,.,n),

sy +0)=1" (r=0,0r1,0r2),
SO (Y1 — 0=, (r=0,0r 1,or2).

I-type interpolation problem: Finding s(x) € Sp(4,, 2) such that

()=
57 (% +0)=/7"
$7(e, = 0) =/

(j: 1, 2,..-, n-— I)’
(r = any two among 0, 1, 2),

{r = any two among 0, 1, 2).

3. VARIATIONAL PROPERTIES
Let

PC™[a, b] = {g(x)| g(x) € C"~'[a, b], g"™(x) is piecewice continuous on
[a, b] and there are only a finite number of discontinuous
points of the first kind},

PCTla, b] = {glx)| g(x) € PC"[a, b), g(y)) =f;5) =0, Loy n + 1},
PCT(a, b] = {glx) | g(x) € PC™[a, b], g(x)) =[}») = 0, Loy m}.

Set
R t—v,
u () =21 "1 (1) = it/
iv1 Y Yiv1—V;
P 1 —x,
vl(t)-_——fif—-——, vz(,)=_._.1_’
Xjs1 =X Xjt1 %

Pi(8) = y;u,(2) + x;u,(8),
Pi(t) = x;uy(8) + y;4 4y (0),
q:(8) = x;0,(8) + ;1 1 02(8)s

g3() =y, 10:(8) + x5 0,(2),

Do) = x;u, (1) + y;u,(2),

Pa) =y u, (1) + X;u,(1),
() =¥;10,(0) + x;0,(0),
24(8) =X, 01 (8) + p . 2(0)
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Consider two kinds of functional:

n+l-k

= 2 e/l k=12

where

T =[S i) 41 a0 st

Yj

+ (3 + S (pa(£))] ”1(xj)}2 dt

AR VIO SN ERENY

FU @O @O 00 )P (=0, L 1K)
7oy =22 I@)= d’;‘j) =123
x=pi(t) x=qt

THEOREM 3.2. Let f(x)E€ PC*[a,b]. Then f(x) is a solution of the
Sfunctional equation
ka[f]ZO (3.1)
if and only if
k=1 f(p,(0) —f(p:(1) +S(ps(1) = f(ps(1)) = O, (3.2)
k=2 flg,(0)—S(g:(t) +/(g:(1) —f(gq.(1)) = 0. (3.3)

Proof. Let k= 1. The sufficient condition is obvious. Let us show the
necessary condition. By (3.1) we obtain

[f'(p:i(1)) + 1" (P, (£))] uy(x;)
+ [ (ps(O)) + ' (pa(D)] u,(x;) =0, LE [y, + 1].

Integrating,
S0 (1) = f(p2(8) +f(p3(1)) —f(pa(2)) = c.
Setting
t= %(yj +J’j+1),
we obtain
Xty Xty X+ Vi X+ Vi) _
L e e e e e e B

i.e. ¢ =0. Therefore (3.2) is valid.
For k =2 the proof is similar. Q.ED.
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COROLLARY 3.2.1. Let f(x) € PC*a,b|. If f(x) is a solution of the
Sfunctional equation (3.1) then
k=1: f(y)=S(y;1)
k=2 f()=/(x0).

COROLLARY 3.2.2. Let f(x) € PC?*|a, b]. If

k=1: on [y, x] [x,¥.:] f(x) is symmetrical, respectively,
about the midpoint of these intervals,

k=2: on [x;, 31 [Vj115X41] f(x) is symmetrical, respectively,
about the midpoint of these intervals,
then f(x) is a solution of the functional equation (3.1).

By the theorem above we directly obtain the following theorem.

TuEOREM 3.3, Let f(x)€ PC?[a,b]. Then f(x) is a solution of the
Junctional equation J [ f]1=0 (k= 1,2) if and only if

k=11 f(p()—f(pAD) +1(P:()) =S (ps()) =0,
t€ynyin),  J=0,1L.,m
k=2 f(g,() —f(qA0) +/(a:(1) — f(qs(t)) =0,

te ['xj’xj+l}’ j:O, 1,--., n— 1-

CoOROLLARY 3.3.1. Let f(x) € PC*a,b]. If f(x) is a solution of the
Junctional equation J,[f]=0 (k= 1,2) then

k=1: f(yo)=f()="-=F(Pus1)
k=2 flxg)=f(x))="-+=f(x,).

COROLLARY 3.3.2. Let f(x) € PC*[a, b]. If on the intervals |x;,y;, ),
[Vis1o X1 (G=0, L., n—=1) f(x) is symmetrical, respectively, about the
midpoint of these intervals then f(x) is a solution of the functional equation
Jlf1=0.

If f{x)€Sp,,2) the sufficient and necessary conditions will be
simplified.

THEOREM 3.4. Ler s(x) € Sp(4,, 2). Thern s(x) is a solution of (3.1) if

and only if
k=1 s(y)=s(y;.1)

k=2 s(x;)=s(x;. )
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Proof. The necessary conditions have been given by Corollary 3.2.1. Let
k == 1. Integrating by parts,

Jlj{s} = {S(xj) - S(J’j) + S(yj+l) - S(x;)]{(s’(xj) + 3’()’;)) uz(xj)
+ (" (¥ )+ Sl(xj)) ul(xj)] - [S(.Vj) —8(x;) + 80¢;) — s(y;41)]
X (" (¥) + 5"(x))) ua () + (5" () + 8 (§41)) 1 (x))]
[ 120) = s(2(0) + 5(2x(0) = (PO~ 0)

— 5"(x;— 0)) u3(x;) — (8"(x; + 0) — 5" (x; + 0) )] e = 0.

For k = 2 the proof is similar. Q.E.D.

THEOREM 3.5. Let s(x) € Sp(dy,2). Then s(x) is a solution of the
Junctional equation J,[s]| =0 if and only if

k=1: s(yo)=s(y)="-=5(Vpi1h
k=2 s{x,)=s{x)=--=5(x,)

This theorem is directly obtained from Theorem 3.4.

CoroLLARY 3.5.1. Let s(x)E€Sp(d,,2). Then s(x) is a solution gof
J.[s] =0 if and only if s(x) = const.

COROLLARY 3.5.2. Let s(x)€ Sp{d,,2) and s'(x,)=5s'(x,)=0. Then
s(x) is a solution of J,[s] =0 if and only if s(x) = const.

THEOREM 3.6. Let s(x) € Sp(d,, 2) be the solution of a k-type (k= 1, 2)
interpolation problem with f(x) € PCila,b]. Then there exist the first
integration relationships:

local:  Jylf]1=Jdyls] +J4l/—s] (=0 le,n+1—k) (3.4)

global: Jf1=Jils]+[f~s]  (k=1,2). 3.5)

Proof. Let k= 1. We have

J]j[f—s}zjlj[f}—‘,lj[s] —2I[f~s,s],
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where

117=s,51=["" {17 (p0) = 5 (pi(0)
+1(py(1)) = 5" (P2())] ua(x) + [/ (P3(1)) — 5" (P3(1))
+'(2a(0) — 5" (po(D)] s (k) H s (Po(1))
+5'(P0))] uax)) + [8'(P3(0)) + ' (po(0))] u, (x,)} dt. (3.6)
Integrating I{f— s, s}, by parts, we obtain

If=ss]=[(/(x) = sx)) = (f(¥) —s(¥)
+ (f (e = 5(y;510) — (F(x) = s[5 (x;)
+ 5/ () ua(x;) + (' (3y0 ) + 5'(x))) uy(x)]
— () = s(¥) = (f (x)) = s(x)) + (f(x;) = s(x;))
= ([ ) = s DG () + 57 (x))) ualx))
+(8'(x;) + 5"(¥4 1)) wa(x;)]

[ 0i@) = s(pi)] = [ (2o0) = s(20)

+ [f(p2(0) = s(ps(N] = [f (ps(D) — s(p()]}
X [(8"(x; = 0) — " (x; — 0))} uy(x))
— (8”0, +0) = 5"(x; + 0)) 2, (x)| dt = 0,

so (3.4) and (3.5) are valid for &= 1. For £ = 2 the proof is similar.
Q.E.D.

TueOREM 3.7. With f(x) and s(x) as in Theorem 3.6, there must be

global:  J,[s] <J S k=1,2).

Proof. Because J |f—s5]>0, J,[f—s]>0, by the first integration
relationship we directly obtain Theorem 3.7.

Remark. By Corollary 3.3.2 we know that J,[f] does not uniquely
attain a smallest value in the class of PC:|a, b] functions which interpolate a
given k-type data set. However, by the corollaries to Theorem 3.5 we know
that uniqueness does hold in the class Sp(4,, 2).
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THEOREM 3.8. Let f(x)€ PCila,b], and let s{x)€E Sp(d,,2) be the
solution of the k-type (k=1,2) interpolation problem for f{x) and
s(x) € Sp(4,, 2) be an arbitrary quadratic spline function. Then there are

local:  J [ f—s¢] STyl S~ 5[] (=0,1,.,n+1-k), (37
global:  J,[f— s/ <J[f—s] (k=1,2). (3.8)

Proof. We have

Julf = st =Tylf— s, + Tls,— 5] + 2 f ~ 55, 5, 5],

where I{f—s,,s,—s] is similar to (3.6) and easily shown to be zero.
Therefore

Jlf—sl=Jyls,— s+ J,[f— s/

But

so (3.7) and (3.8) are valid.

Remark. By the corollaries of Theorem 3.5 we know that if s(x) and
s{x) have the same end point values the equality case of (3.8) holds only if

s(x) = sdx).

THEOREM 3.9. Let f(x)€ PCila,b], and let s{x)€ Sp(d,,2) be the
solution of the k-type (k= 1,2) interpolation problem for f(x). Then there
are the second integration relationships

local:  Jyy| —s;=—Lylf—551] (J=0,1..,n+1-k),
global:  Ji[f—s]=—L[f=sp.f] (k=12)

where

Ll =spf1= [ LI = sAp@)] = [ (2a0) = s po(0)]

+ [f(ps(0)) — Sj(Pz(‘))] ~ [f(ps(0) — Sj(P4(t))]}
X AL (@) =" (2o ()] u3(x))
+ [£7(D3(0) =" (pa(eN)] ui(x))} dt,
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Llr=spf1= " 11A@0) — skai()] - [A0:(0) ~ sfax(0)]

+ [Ra:(0) = s4g:(N] = [£(g4(1)) — s ()]}
X ALS"(q() —f"(g:(6))] v%(}’jn)
+ [7(q:0) =" (g iy, )} de,

n+li-k

Lif=spfl= Y Lylf=spf)

j=0

Proof. By integration by parts we obtain this theorem.

4. CONVERGENCE

When we discuss the I-type interpolation problem we use the following
symbols:

hi=Yi1—Vis =Y — X i=0,1,...n

m;=5'(y;) M, =s"(y) i=0,1.,n+1

The solution of the 1-type interpolation problem can be expressed as
follows:

s(x) = f; + mix — y,) + M(x — p)*/2 + di{x — x,)}

. (4.1)
€ ¥yl i=0,1,.,n).

The parameters m,, m,,..., m, satisfy the system of linear equations

Qoami+ Q+ag +b )My + b my =1 (=0, 1,.,n-1),

4.2)
where
R (hi— 1) figihy
LR 1\ kS N 43
e v S S R Sppr e T B
_2hi+1(fi+1—fi) + 2hi(fi+2—fi+l) (4‘4)

r. = .
H :i(hi+ki+l) (k,--i‘ki“)(h“(—-ti“)
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Also,
M, = 2(fis1 =) LT @h;—t)m; (i=1,2.., 1),
hhi—t)  hihi—t) k(i —t) (4.5)
t—h, hi—t, 2
M§+2di— Iihi mg..1+ fl-h,- m;‘ zl‘hg (.f;"i-l .fl)

(i=0,1,...,n—1) (4.6)
The parameters M,, M,,...,, M, satisfy the system of linear equations

As+1Mz‘+ (1 ’Ai+x _Bi+1)Mf+1 +Bi+1Mi+2 =R:‘+1 (i= 0,1..,n— 1),

4.7
where
(ti‘“h‘)z t?+1
4,  =-—t B, 6= 4.8
U b+ Ry ) T R+ Ry ) (48)
2 (fur—tier Sini—
R. — i+2 i+1  Ji+1 z)- 4.
U R+ kg, < By h; (“9)
Also,
m; = (f;‘m —fz‘)/‘hf - M:'ki/z - (Mi+1 _Mz) f?/(zhi) (i= 0, 1,..., n), (4'10)
di=M, ,—M)2 (i=0,1,..n). @411

When we discuss the 2-type interpolation problem we use the following
symbols:

hi=X;.1— X =X 00— Vit i=0,L,n—1,
m;=s'{x,;), M,=5"(x) i=0,1,.,n

The solution of the 2-type interpolation problem can be expressed as
follows: :

s(x) =S+ mx —x) + Mfx = x)*/2 + d(x = y;,)%
xex,x;.,1,i=0,1.,n-1). (4.12)
The parameters m,, m,,..., m,_, satisfy the system of linear equations
Q+a +b)m +bymy=r —a, f,
apymi+ 2+ a;, + b )m Hbymyy=ryy, (=12.,n-3)
Ay My ¥+ Q+a,_+b,_)m, =1, —b, [}, (4.13)
where a;, b;, r; are as in (4.3), (4.4) and M,, d; are as in (4.5), (4.6).
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The parameters M,, M ,,..., M, satisfy the system of linear equations

(1—-Ag)My+ BM, = 2((/; ~Jo)/to ~f o) hos
Ar’+lMi + _Ai+i_Bi+l)Mi+l+Bi+lMi+2 :Rm-n (i=0,1..,n~ 2)»

AnMn—l + (1 ”An)Mn= 2(.}m - (fn _fn»l)/hnwl)/hn—-l’ (414)

where 4;, B, R, are as in (4.8) (4.9) and m,, d; are as in (4.10), (4.11).
For the sake of convenience set

gl =max|gl lgl= ggpblig(x)I,

w(g k)= sup ) | g(x’) —8(x")ls

x',x"€la,
Ix'—x"i<h
h= max h,

ogign+ 11—k

max (t;/h, (h; — t,)/h) < @ = const,

oign+1—
e(x) =/ (x) — s(x).

The following lemma is easily shown.

LemMMa. Let
Qi+ by Uy € Ui =Ty (=0, 1L...,n—1).
If the coefficients q,, b;, ¢, satisfy the conditions

a,=c,=0, a; 20, c; 20, i=1,2,..,n,

1

(4.15)
bi—(a;+c)>K! (i=1,2,..,n; K = const),
then
lu ] <K |lrl
THEOREM 4.10. If f(x) € C°[a, b] and partitions 4,, 4, satisfy
oJnax (hit,, Bf(h;_ —t;_)) < B = const. (4.16)

then for the solution of the 1-type interpolation problem

el <2(1 + af) w(f; ). 4.17)
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Proof. Let k= 1. Apply the lemma to system (4.2) to obtain
liAr, 1| < 2Ba(f; h),
h|ml < Bo(f, h).
Estimating (4.5), (4.6), obtain
(B~ 1) M <201 + aB) w(f; k) (i=12,.,n),
HIM + 24| <20+ e w(f,h) (=0, L,n—1)
If x€ [y, x| (i=1,2,..,n) then
s(X)=f; + mx = ;) + M(x = »,)*/2,
e 1S () —fil + (B — 1) [y} + (h; — 1) |M]/2
<21+ o) o(f; h).
Ifx€[x;,y0,] (=0, 1., n—1) then
SO =frgr + M =y )+ M+ 2d)(x = i.0)7/2,
le(x) < 2(1 + af) w(/; ).
For k = 2 the proof is similar. Q.E.D.

When f(x)€ C%a,b] f'(x) may not be defined at x=a, x=>, so we
change the end point conditions (2.3) of the 2-type interpolation problem to

s"(xo) = (f; = fo)/ oo s'(x,) = (fu =S )/ Bz (4.18)

In this case we obtain a similar theorem.

TueorReM 4.11. If f(x) € C°|a, b] and partitions A,, 4, satisfy (4.16),
then for the solution of the 2-type interpolation problem (2.2), (4.18) the
estimation (4.17) holds.

TueoREM 4.12. If f(x) € C'|a, b] and partitions 4,, 4, satisfy

max (/4 by i /(hiy s — 131)) <7y = const, (4.19)

ogi<n—

then for the solution and its derivative of the k-type (k =1, 2) interpolation
problem

e (x)|

<3 +y) o(f7, h),
el <

3a(1+ 7,) ho(f", B).

640/40/1-6
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Proof. Let k= 1. Rewrite system (4.2) to obtain

ap o mi—fD)+ Q+ay, +b)m —fia) +bim =) =7,
Fioi=lii— @G fi—Q+a  + b, ) i~ b Sl

i=0,1,.,n—1.
Apply the lemma to the system above to obtain
e’ Gl < 3(1 +y) (/s h).

If x € [y, x;] then

le(x) =

[ 0= o] <30 +5) ot by

If x€ [x;,y;,,] then

X {
o= || OO dr | <3 +7) kol h)
For k = 2 the proof is similar. Q.E.D.

CoROLLARY 4.12. If f(x) € C*|a, b] and partitions 4,, 4, satisfy (4.19)
then for the solution and its derivative of the k-type (k = 1, 2) interpolation
problem

lle’(x)|

irho(f )y + 301" A,
leG)ll < 3

f
<oy RPo(f' h) + 3|1 /"] k%

<
<

THEOREM 4.13. If f(x) € C*|a, b) and partitions A,, 4, satisfy
h;/t;=y = const i=2—-k3—k.,n—~1) (4.20)

and

V2 <y<2+/2, (4.21)

then for the solution and its derivatives of the k-type {(k = 1, 2) interpolation
problem

le"Gl < (1 +e) w(f", h),
e’ < (1 +¢,) ho(S", ),
lleGll < a(l +¢,) B a(f", h),
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where

@+ D/ -2) (when /2 < y< 2),
' =27+ 1)/(dy—9y* —2)  (when2<y<2+/2).

Applying the lemma to systems (4.7), (4.14) obtains
IM;—f7 1 < er(f, h).

The proof is finished by a demonstration similar to Theorem 4.12.

COROLLARY 4.13. Iff(x) € C’la, b] and partitions 4,, A, satisfy (4.20),
(4.21) then for the solution and its derivatives of the k-type (k= 1, 2) inter-
polation problem

lle” ) < (L) Al
le' G < (1 +e) A {LF],
le(l <all +e¢) R /"]

THEOREM 4.14. If f(x) € C?|a, b] and partitions A,, 4, satisfy (4.20)
and when y > 2 the partitions A, _, is nondecreasing, i.e.,

hzﬁk<h3rk< éh

n—1s

when y < 2 the partition 4,_, is nonincreasing, i.e.,

h2—k>h3rk> >hn—l’

then for the solution and its derivatives of the k-type (k = 1, 2) interpolation
problem

le” )l < (1 + e (£, h),
le’ (Ol < (1 + ¢,) hoo(f7, h),
le)| < all + ¢;) R*w(f", ),

where ¢, = (3y* — 2y + 2)/(4y — 4).

THEOREM 4.15. If f(x) € C*|a, b] and partitions A,, A, satisfy (4.20)
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and y=2 (i.e., midpoint}, then for the solution and its derivatives of the k-
type (k =1, 2) interpolation problem

lle”(x)l < 3.5w(f", h),
lle'Goll < 3.5hw(f ", h),
le(oll < LISk (", h).

In fact, this theorem is a corollary of Theorem 4.13.

REFERENCES

1. M. J. MARSDEN, Quadratic spline interpolation, Bull. Amer. Math. Soc. 80 (1974),
903-906.

2. W. J. KamMMERER, G. W. REDDIEN, anD R. S. VARrRGA, Quadratic interpolarity splines
Numer. Math. 22 (1974), 241-259.

3. C. pE Boor, Quartic spline interpolation and the sharpness of Lebesgue’s inequality, J.
Approx. Theory 17 (1976), 348-358.

4. 8. DEMKO, Interpolation by quadratic splines, J. Approx. Theory 23 (1978), 392-400.

5. A. SHarMa anD J. TzmveaLario, Quadratic splines, J. Approx. Theory 17 (1977},
186-193.



